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1. Introduction.

Since the early part of this century, estimates for Weyl sums (or generalisations thereof)
have been central to the treatment of many problems in the additive theory of numbers.
For over forty years, the strongest such estimates have stemmed from a method due to
Vinogradov [8], the argument having been somewhat simplified recently by the use of
the large sieve (see [4, Lemma 5.4]). During this period, improvements in estimates for
generalisations of Weyl sums have arisen from improved bounds on mean values of such
sums, very recently with the arrival of Vaughan’s new iterative method (see [5, Theorems
1.5 and 1.8]) . In contrast, this paper will be devoted to improvements at the core of this
circle of ideas, within Vinogradov’s method itself. Our ideas, which here we shall investigate
in the context of smooth Weyl sums, would seem to be applicable elsewhere, and this is a
matter which we intend to pursue in the future. We now describe our conclusions in some
detail.

Let k be a natural number, and P be a large real number. When 2 ≤ R ≤ P , we
define the set of R-smooth numbers, A(P,R), by

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime, p|n ⇒ p ≤ R} ,

and for each real number α, we define the corresponding smooth Weyl sum, f(α;P,R), by

f(α;P,R) =
∑

x∈A(P,R)

e(αxk),

where here, and throughout, we write e(α) = e2πiα. The precise form of our results is to
be found in section 4, the following upper bound being a simple corollary.

Theorem 1.1. Let m denote the set of real numbers α such that whenever a ∈ Z,
q ∈ N, (a, q) = 1 and |α − a/q| ≤ q−1P 1−k, one has q > P . Then when η = η(ε, k) is a
sufficiently small positive number, and 2 ≤ R ≤ P η, we have

sup
α∈m

|f(α;P,R)| �ε,k P 1−ρ(k)+ε,

where, when k is large, ρ(k)−1 = k (log k + O(log log k)).
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For comparison, Vaughan [5, Theorem 1.8] obtains a similar result with the exponent
satisfying ρ(k)−1 = (4 + o(1))k log k, this having been improved, by means of superior
mean value estimates, by Wooley [9, Theorem 1.4] to the extent that “4” can be replaced
by “2” in the latter conclusion. We note that when R = P , the exponential sum f(α;P,R)
represents a classical Weyl sum, for which the best estimate corresponding to Theorem
1.1 currently has exponent satisfying ρ(k)−1 = (2 + o(1))k2 log k (see [10, Corollary 1.1]).
Thus, since card(A(P, P η)) �η P when η is positive, for points in m, estimates for smooth
Weyl sums are considerably sharper than those for classical Weyl sums.

As far as applications of our new estimate in additive number theory are concerned, we
shall restrict ourselves to a cursory consideration of two basic problems. First we improve
localised estimates for the fractional parts of αnk.

Theorem 1.2. Let k ∈ N, α ∈ R and ε > 0. Then there is a real number N(ε, k)
such that whenever N ≥ N(ε, k),

min
1≤n≤N

‖αnk‖ ≤ Nε−τ(k),

where when k is large, τ(k) satisfies τ(k)−1 = k(log k + O(log log k)).

This may be compared with [11, Corollary to Theorem 1.2], where a similar result is
established with τ(k)−1 = 2k(log k + log log k + 2 + o(1)). Our improvements in Waring’s
problem are, unfortunately, rather small. This is because improvements in “minor arc”
estimates for exponential sums tend to have a less significant impact, within the circle
method, than reduced upper bounds for mean values. As usual, we define G(k) to be the
smallest number s such that every sufficiently large natural number is the sum of, at most,
s kth powers of natural numbers. The precise form of our new estimate (see Corollary 1
to Theorem 4.2) leads to the following bounds for G(k) when 10 ≤ k ≤ 20.

Theorem 1.3. We have G(10) ≤ 62, G(12) ≤ 78, G(13) ≤ 86, G(14) ≤ 94, G(15) ≤
102, G(16) ≤ 110, G(17) ≤ 118, G(18) ≤ 127, G(19) ≤ 135, G(20) ≤ 144.

For comparison, the respective bounds G(10) ≤ 63, G(12) ≤ 79, G(13) ≤ 87, G(14) ≤
95, G(15) ≤ 103, G(16) ≤ 112, G(17) ≤ 120, G(18) ≤ 129, G(19) ≤ 138, G(20) ≤ 146 were
obtained in [9, Theorem 1.1]. When k = 11, our improvements are not sufficiently large
to lead to a visible reduction in G(k). For large k our methods now lead to the following
upper bound on G(k).

Theorem 1.4. We have

G(k) ≤ k

(
log k + log log k + 2 + O

(
log log k

log k

))
.
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This conclusion may be compared with [11, Theorem 1.3], where a similar result is
given with “2 + log 2” replacing “2”.

Our estimate for f(α;P,R) is based on an application of the large sieve inequality, in
essence, at least in the initial stages of the argument, following the treatment of Vaughan
[5, section 10]. We let M be a real number with P 1/2 ≤ M ≤ P to be chosen later. By
Dirichlet’s Theorem, we may find a ∈ Z and q ∈ N with (a, q) = 1, |qα−a| ≤ 1

2 (MR)−k and
q ≤ 2(MR)k. Then, by a suitable combinatorial lemma combined with Hölder’s inequality,
when s ∈ N we are able to bound the smooth Weyl sum f(α;P,R) in the form

f(α;P,R)2s � M2s+ε + (MR)2s−1
∑

M<v≤MR
(v,q)=1

∣∣∣∣∣∣
∑

1≤y≤s(P/M)k

bye(αvky)

∣∣∣∣∣∣
2

, (1.1)

where by denotes the number of solutions of the diophantine equation

uk
1 + . . . + uk

s = y,

with ui ∈ A(P/M, R) (1 ≤ i ≤ s). We may classify the values of v into O(P ε) sets
V1, . . . ,VL so that v1, v2 ∈ Vj and vk

1 ≡ vk
2 (mod q) together imply that v1 ≡ v2 (mod q).

Thus, provided that M is chosen suitably, there is a j satisfying

f(α;P,R)2s � (MR)2s−1+ε
∑
v∈Vj

∣∣∣∣∣∣
∑

1≤y≤s(P/M)k

bye(αvky)

∣∣∣∣∣∣
2

.

When α lies in a set of type similar to the set m defined in the statement of Theorem 1.1,
an analysis of the αvk shows that they are spaced at least (2q)−1 apart modulo 1. Then
by the large sieve inequality,

f(α;P,R)2s � (MR)2s−1+ε
(
q + s(P/M)k

) ∑
1≤y≤Y

b2
y,

the last sum being bounded by using a suitable mean value estimate for smooth Weyl
sums. The strength of the ensuing bound for f(α;P,R) now depends on the relative
magnitudes of M and q +(P/M)k, our estimate improving as the former parameter grows
and the latter expression decreases. Vaughan takes M = P 1/2, which leads to the bound
q + (P/M)k � P k/2. We take M = Pλ with λ a parameter satisfying 1

2 < λ < 1. As
it stands, it is possible that q is as large as P kλ, and this would lead to weak bounds
on f(α;P,R). However, by modifying an argument of Heath-Brown [2, section 5], it is
possible to obtain a complementary bound on f(α;P,R) which is useful only when q is
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large. Thus we are able to discard those q with q > P k(1−λ), and thereby achieve a suitable
bound on q + (P/M)k.

The above argument is effective for the set of α satisfying the property that whenever
a ∈ Z, q ∈ N, (a, q) = 1 and |α−a/q| ≤ q−1MP−k, one has q > M . In Vaughan’s analysis
one is constrained to take M ≤ P 1/2, which limits the strength of the ensuing bounds.
The basic advantage of our new method is the relaxation of this condition, and indeed for
large k we may now take M = P 1+o(1). We note that Thanigasalam [3] has obtained a
variant of Vinogradov’s method which can be applied to smooth exponential sums (see [4,

section 9]). The latter method permits one to take M = P
k

2k−1 = P
1
2+O(1/k), so that it is

asymptotically of no greater strength than that due to Vaughan.

In section 2 we record some basic estimates for mean values of smooth Weyl sums, and
also provide a suitable combinatorial lemma for our later arguments. Section 3 is devoted
to the task of establishing an asymmetric estimate for f(α;P,R) of value for large moduli
q, which in combination with a suitable estimate for small moduli in section 4, leads to the
desired estimate for f(α;P,R). In sections 5 and 6 we then draw corollaries concerning
Waring’s problem and the fractional parts of polynomials.

The author thanks the referee for several useful comments which have improved the
exposition of this paper.

2. Preliminary observations.

We start by recalling some of the salient features of the new iterative method in Waring’s
problem. Throughout, s, t and u will denote positive integers, and ε and η will denote
sufficiently small positive numbers. We take P to be a large positive real number depending
at most on k, s, t, u, ε and η. We use � and � to denote Vinogradov’s well-known
notation, implicit constants depending at most on the latter numbers. Also, we write [x]
for the greatest integer not exceeding x, and write ‖x‖ for miny∈Z |x − y|. In order to
simplify our analysis, we adopt the following convention concerning the numbers ε and R.
Whenever ε or R appear in a statement, either implicitly or explicitly, we assert that for
each ε > 0, there exists a positive number η0 = η0(ε, s, t, u, k) such that the statement
holds whenever R = P η, with 0 < η ≤ η0. Note that the “value” of ε, and η0, may change
from statement to statement, and hence also the dependency of implicit constants on ε

and η.
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We define Ss(P,R) to be the number of solutions of the diophantine equation

xk
1 + . . . + xk

s = yk
1 + . . . + yk

s ,

with xi, yi ∈ A(P,R) (1 ≤ i ≤ s). Thus

Ss(P,R) =
∫ 1

0

|f(α;P,R)|2sdα.

We shall say that an exponent ∆s = ∆s,k is permissible whenever the exponent has the
property that Ss(P,R) � Pλs,k+ε, with λs,k = 2s − k + ∆s,k. It follows easily that any
permissible exponent ∆s,k is non-negative, and moreover, without loss of generality, that
∆s,k ≤ k. The following lemma provides us with permissible exponents when k is large.

Lemma 2.1. Let k ≥ 4 and t ∈ N. For each s ∈ N with 2 ≤ s ≤ t, define the real
number ∆s = ∆s,k to be the unique positive solution of the equation

∆se
∆s/k = ke1−2s/k.

Then ∆s,k is permissible, and consequently the exponent ∆∗
s,k = ke1−2s/k is permissible.

Proof. This is the corollary to [11, Theorem 2.1], which simplifies [9, Lemma 3.2].

We shall require a result on the density of integers with a given square-free kernel.
Given an integer v with canonical prime factorisation

∏t
i=1 pri

i , we denote by s0(v) the

square-free kernel of v, that is
∏t

i=1 pi. Furthermore, we define the set Cq(Q) by

Cq(Q) = {x ∈ Z ∩ [1, Q] : s0(x)|s0(q)} .

Lemma 2.2. Suppose that L is a positive real number and r is a positive integer with
log r � log L. Then for each ε > 0,

card(Cr(L)) � Lε.

Proof. For each divisor d of r, it follows from [9, Lemma 2.1] that

card {1 ≤ y ≤ L : s0(y) = s0(d)} � Lε.

The lemma now follows by using standard estimates for the divisor function.

We conclude this section by providing a means of decomposing the smooth Weyl sum
f(α;P,R) into a form in which we can apply the arguments of sections 3 and 4. For this
purpose we apply essentially the same argument as that used by Vaughan [5, p67].
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Lemma 2.3. Let α ∈ R and r ∈ N, and suppose that Q, M and R satisfy 2 ≤ R ≤
M < Q. Then ∑

x∈A(Q,R)
(x,r)=1

e(αxk) � R log Q max
π≤R

π prime

sup
θ∈[0,1)

Vr(α;Q,M,R;π, θ) + M,

where

Vr(α;Q,M,R;π, θ) =
∑

v∈B(M,π,R)
(v,r)=1

∣∣∣∣∣∣∣
∑

u∈A(Q/M,π)
(u,r)=1

e(α(uv)k + θu)

∣∣∣∣∣∣∣ ,
and

B(M,π,R) = {v ∈ N : M < v ≤ Mπ, π|v, and p prime, p|v ⇒ π ≤ p ≤ R} .

Proof. On following the argument leading to equation (10.9) of Vaughan [5], it
is apparent that the conclusion remains valid with first summation in equation (10.10)
adjusted so that the condition M < v ≤ MR is replaced by v ∈ B(M,p, R). The lemma
therefore follows immediately from equations (10.4), (10.6), (10.9) and (10.10) of Vaughan
[5].

3. Upper bounds for large moduli.

When α is close to a rational a/q with q large, we use an asymmetric form of an argument
similar to one used by Heath-Brown [2, section 5] in the estimation of the fractional part
of αnk.

Lemma 3.1. Suppose that λ satisfies 1
2 < λ < 1, and write M = Pλ. Let α ∈ R, and

suppose that there exist a ∈ Z and q ∈ N satisfying (a, q) = 1 and |α − a/q| ≤ q−2. Then
when t, w ∈ N, and ∆t and ∆w are permissible,

f(α;P,R) � qεP 1+ε
(
M∆w(P/M)∆t

(
q−1 + M−k + (P/M)−k + qP−k

)) 1
2tw + M.

Proof. By applying Lemma 2.3 with r = 1, we deduce that there exists a prime π

with π ≤ R, and θ ∈ [0, 1) such that

f(α;P,R) � P εR
∑

v∈A(MR,R)

|h(α; v, θ)|+ M, (3.1)
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where

h(α; v, θ) =
∑

u∈A(P/M,π)

e(α(uv)k + θu).

Define the complex numbers of unit modulus, ε(v, θ), by

|h(α; v, θ)|t = ε(v, θ)h(α; v, θ)t. (3.2)

Also, let rc denote the number of solutions of the diophantine equation

uk
1 + . . . + uk

t = c, (3.3)

with ui ∈ A(P/M, π), in which each solution u is counted with weight e(θ(u1 + . . . + ut)).
Thus

h(α; v, θ)t =
∑

1≤c≤t(P/M)k

rce(αcvk),

and hence an application of Hölder’s inequality, together with (3.2), yields

 ∑
v∈A(MR,R)

|h(α; v, θ)|

t

≤ (MR)t−1
∑

v∈A(MR,R)

|h(α; v, θ)|t

= (MR)t−1
∑

1≤c≤t(P/M)k

rc

∑
v∈A(MR,R)

ε(v, θ)e(αcvk).

Next we note that |rc| ≤ nc, where nc denotes the number of solutions of the equation
(3.3) with ui ∈ A(P/M, π). A further application of Hölder’s inequality therefore shows
that

 ∑
v∈A(MR,R)

|h(α; v, θ)|

2tw

≤ (MR)2w(t−1)

(∑
c

nc

)2w−2(∑
c

n2
c

)
Jw(α),

where

Jw(α) =
∑

1≤c≤t(P/M)k

|g(α; c, θ)|2w, (3.4)

and

g(α; c, θ) =
∑

v∈A(MR,R)

ε(v, θ)e(αcvk).
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But by considering the underlying diophantine equations, we have
∑

c nc ≤ (P/M)t and∑
c n2

c ≤ St(P/M, R), and hence

 ∑
v∈A(MR,R)

|h(α; v, θ)|

2tw

≤ (PR)2tw(P/M)−2t(MR)−2wJw(α)St(P/M, R). (3.5)

Let ñd denote the number of solutions of the equation

w∑
i=1

vk
i −

2w∑
i=w+1

vk
i = d,

with vi ∈ A(MR, R) (1 ≤ i ≤ 2w), each solution v counted with weight

w∏
i=1

ε(vi, θ)ε(vw+i, θ).

Then by considering the underlying diophantine equation,

ñd =
∫ 1

0

|g(β; c, θ)|2we(−βd)dβ.

Therefore, on making a trivial estimate, |ñd| ≤ ñ0 ≤ Sw(MR,R), since |ε(v, θ)| = 1. On
recalling equation (3.4), we have

Jw(α) =
∑

1≤c≤t(P/M)k

∑
|d|≤w(MR)k

ñde(αcd)

≤ Sw(MR, R)
∑

|d|≤w(MR)k

∣∣∣∣∣∣
∑

1≤c≤t(P/M)k

e(αcd)

∣∣∣∣∣∣
� Sw(MR, R)Υ(q), (3.6)

where

Υ(q) =
∑

|d|≤w(MR)k

min
{
(P/M)k, ‖αd‖−1

}
.

But by using [4, Lemma 2.2] we obtain

Υ(q) � (PR)k+εqε
(
q−1 + (P/M)−k + M−k + qP−k

)
.
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Therefore, by (3.5), (3.6), and recalling the discussion of Ss(P,R) in section 2, we deduce
that∑
v∈A(MR,R)

|h(α; v, θ)| �
(
(PR)2tw+ε(P/M)−k+∆t(MR)−k+∆wΥ(q)

) 1
2tw

� qεP 1+ε
(
(P/M)∆tM∆w

(
q−1 + (P/M)−k + M−k + qP−k

)) 1
2tw .

The lemma now follows immediately from (3.1).

4. Upper bounds for small moduli.

When α is close to a rational a/q with q small, we are able to adapt a variant of Vino-
gradov’s method given by Vaughan [5, section 10] to provide an upper bound for f(α;P,R).
Our proof will differ in detail from that of Vaughan, since we are able to provide some
technical simplifications which lead to a more precise result.

Lemma 4.1. Suppose that 1
2 < λ < 1, and write M = Pλ. Let α ∈ R, and suppose

that a ∈ Z and q ∈ N satisfy (a, q) = 1, |qα − a| ≤ 1
2 (MR)−k, q ≤ 2(MR)k and either

|qα− a| > MP−k or q > MR. Then if s is a natural number with 2s ≥ k + 1, and ∆s is
permissible,

f(α;P,R) � M1+ε + P 1+ε
(
M−1(P/M)∆s

(
1 + q(P/M)−k

))1/2s
.

Proof. Observe that

f(α;P,R) =
∑

x∈A(P,R)

e(αxk) =
∑

d∈Cq(P )∩A(P,R)

∑
x∈A(P/d,R)

(x,q)=1

e(α(xd)k).

Thus, on applying Lemma 2.2,

f(α;P,R) �
∑

d∈Cq(P/M)

∣∣∣∣∣∣∣
∑

x∈A(P/d,R)
(x,q)=1

e(α(xd)k)

∣∣∣∣∣∣∣+
∑

d∈Cq(P )
d>P/M

P/d

� P ε max
d∈Cq(P/M)

∣∣∣∣∣∣∣
∑

x∈A(P/d,R)
(x,q)=1

e(α(xd)k)

∣∣∣∣∣∣∣+ M1+ε.
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Next, by Lemma 2.3, it follows that for some d ∈ Cq(P/M), θ ∈ [0, 1), and prime π ≤ R,
we have

f(α;P,R) � M1+ε + P εRg(α; d, π, θ), (4.1)

where

g(α; d, π, θ) =
∑

v∈B(M/d,π,R)
(v,q)=1

∣∣∣∣∣∣∣
∑

u∈A(P/M,π)
(u,q)=1

e
(
α(uvd)k + θu

)∣∣∣∣∣∣∣ .
Notice here that M/d ≥ M2/P = P 2λ−1, so that M/d is at least as large as some positive
power of P .

Let J(q, d, h) denote the number of solutions of the congruence (xd)k ≡ h (mod q)
with 1 ≤ x ≤ q. Then when (h, q)|dk, a simple estimate gives J(q, d, h) � qεdk. Hence
there is an L � qεdk such that the v with M/d < v ≤ MR/d and (v, q) = 1 can be divided
into L classes V1, . . . ,VL such that for any two distinct elements v1, v2 in a given class Vj ,
we have (v1d)k ≡ (v2d)k (mod q) if and only if v1 ≡ v2 (mod q). On writing cy for the
number of solutions of the diophantine equation

uk
1 + . . . + uk

s = y

with ui ∈ A(P/M, π), we may apply Hölder’s inequality to obtain

g(α; d, π, θ)2s � P εdk (MR/d)2s−1 max
1≤j≤L

∑
v∈Vj

∣∣∣∣∣∣
∑

1≤y≤s(P/M)k

bye(α(vd)ky)

∣∣∣∣∣∣
2

, (4.2)

where |by| ≤ cy.
Now recall that |qα− a| ≤ 1

2 (MR)−k. Thus, if v1, v2 ∈ Vj and v1 6≡ v2 (mod q), then
we have (v1d)k 6≡ (v2d)k (mod q), and hence

‖α((v1d)k − (v2d)k)‖ ≥
∥∥∥∥a

q
((v1d)k − (v2d)k)

∥∥∥∥− 1
2q−1 ≥ 1

2q−1. (4.3)

We divide into cases.

(i) Suppose that q > MR/d. Then the elements of Vj are distinct mod q, and hence
it follows from (4.3) that for v ∈ Vj , the α(vd)k are spaced at least 1

2q−1 apart modulo 1.

(ii) Suppose that q ≤ MR/d. Then since q ≤ MR, by hypothesis we have |qα− a| >
MP−k. Given any two distinct elements v1, v2 of Vj with v1 6≡ v2 (mod q), we may
conclude as in case (i) that α(v1d)k and α(v2d)k are spaced at least 1

2q−1 apart modulo 1.
Thus we are left to consider the situation in which v1 ≡ v2 (mod q), but v1 6= v2. Then

‖α((v1d)k − (v2d)k)‖ = ‖(α− a/q)((v1d)k − (v2d)k)‖ = |α− a/q| · |(v1d)k − (v2d)k|.
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Since v1 − v2 is a non-zero multiple of q, and v1d > M and v2d > M , we have

‖α((v1d)k − (v2d)k)‖ ≥ |α− a/q|Mk−1q > (P/M)−k.

Therefore, in this case, for v ∈ Vj the α(vd)k are spaced at least 1
2 min

{
q−1, (P/M)−k

}
apart modulo 1.

Then in either case, by the large sieve inequality (see, for example, [4, Lemma 5.3])
we have

∑
v∈Vj

∣∣∣∣∣∣
∑

1≤y≤s(P/M)k

bye(α(vd)ky)

∣∣∣∣∣∣
2

�
(
q + (P/M)k

) ∑
1≤y≤s(P/M)k

|by|2

�
(
q + (P/M)k

)
Ss(P/M, R).

Then since 2s ≥ k + 1, it follows from (4.1) and (4.2) that

f(α;P,R) � M1+ε +
(
P ε(MR)2s−1(P/M)2s−k+∆s

(
q + (P/M)k

))1/2s
.

The lemma now follows immediately.

Theorem 4.2. Suppose that 1
2 < λ < 1. Let α ∈ R, and suppose that whenever a ∈ Z

and q ∈ N satisfy (a, q) = 1 and |α − a/q| ≤ q−1Pλ−k, then one has q > PλR. Then if
s, t, w ∈ N satisfy 2s ≥ k + 1, and ∆s, ∆t and ∆w are permissible exponents,

f(α;P,R) � P ε
(
Pλ + P 1−µ(k) + P 1−ν(k)

)
,

where

µ(k) =
k(1− λ)− λ∆w − (1− λ)∆t

2tw

and

ν(k) =
λ− (1− λ)∆s

2s
.

Proof. Write M = Pλ. By Dirichlet’s Theorem, there exist a ∈ Z and q ∈ N with
(a, q) = 1, q ≤ 2(MR)k and |qα − a| ≤ 1

2 (MR)−k. If q > (P/M)k, then we may apply
Lemma 3.1 to obtain the bound

f(α;P,R) � P 1+ε
(
Pλ∆w+(1−λ)∆t

(
P−k(1−λ) + P−kλ

)) 1
2tw

+ Pλ

� Pλ+ε + P 1−µ(k)+ε.
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Thus we may assume that q ≤ (P/M)k. In this second case we apply Lemma 4.1 to
establish the estimate

f(α;P,R) � Pλ+ε + P 1+ε
(
P−λ+(1−λ)∆s

)1/2s

� Pλ+ε + P 1−ν(k)+ε.

This completes the proof of the theorem.

By simply choosing λ optimally in Theorem 4.2, we obtain the following conclusion.

Corollary 1. Let s, t, w be natural numbers satisfying 2s ≥ k + 1, and suppose that
∆n (n = s, t, w) are permissible exponents. Define

σ(k) =
k −∆t −∆s∆w

2(s(k + ∆w −∆t) + tw(1 + ∆s))
,

and

λ(k) =
s(k −∆t) + tw∆s

s(k + ∆w −∆t) + tw(1 + ∆s)
.

Suppose that 1
2 < λ(k) < 1− σ(k). Then when α satisfies the hypotheses of Theorem 4.2,

f(α;P,R) � P 1−σ(k)+ε.

We now explore the consequences of our new estimate when k is large.

Corollary 2. Let mλ denote the set of α ∈ R such that whenever a ∈ Z, q ∈ N,
(a, q) = 1 and |α− a/q| ≤ q−1Pλ−k, then q > PλR. Then there is a natural number k0(ε)
with the following property. When k ≥ k0(ε), there are real numbers λ = λ(k) and σ(k)
with

log log k

log k
� 1− λ � log log k

log k
,

and
σ(k)−1 = k(log k + O(log log k)),

and such that
sup

α∈mλ

|f(α;P,R)| � P 1−σ(k)+ε.

Proof. We put

s =
[
1
2k log k

]
, t =

[
k log log k

log k

]
, w = [k(log log k − log log log k)] .
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Then on solving the equation ξeξ = e1−2t/k, we find from Lemma 2.1 that the exponent
∆t is permissible, where

∆t

k
= 1− t

k
+ O

(
t2

k2

)
.

Hence

k −∆t = k
log log k

log k

(
1 + O

(
log log k

log k

))
.

Similarly, the exponents ∆w and ∆s are permissible, where by the concluding remark of
Lemma 2.1,

∆w = ke1−2w/k � k

(
log log k

log k

)2

,

and
∆s ≤ ke1−2s/k � 1.

We now note that, in the notation of Corollary 1 to Theorem 4.2,

σ(k)−1 = 2s +
2(s∆w + tw)(1 + ∆s)

k −∆t −∆s∆w
.

Thus
σ(k)−1 − k log k � k log log k. (4.4)

Furthermore, again in the notation of Corollary 1 to Theorem 4.2,

λ = 1− s∆w + tw

s(k + ∆w −∆t) + tw(1 + ∆s)
.

Thus
log log k

log k
� 1− λ � log log k

log k
,

and so, in particular, when k is sufficiently large we have 1
2 < λ < 1 − σ(k), and so the

hypotheses of Corollary 1 to Theorem 4.2 are satisfied. Therefore, in view of (4.4), the
corollary follows immediately from Corollary 1 to Theorem 4.2.

We note that Theorem 1.1 is merely a simplification of Corollary 2 to Theorem 4.2.
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5. The estimation of G(k).

The estimation of G(k) is now relatively routine. It should be noted that our “minor”
arcs will be slightly different from those used in previous analyses (see, in particular, [6,
section 9]). Thus we shall take this opportunity to record the new results stemming from
our analysis in the form of the following theorem.

Theorem 5.1. Let λ(k) and σ(k) be the real numbers defined in Corollary 1 to
Theorem 4.2. Under the same hypotheses as in that corollary, for each integer v with
v ≥ k − 1, and each permissible exponent ∆v,

G(k) ≤ 2v + 3 +
[
∆v+1

σ(k)

]
.

Proof. Let n be a large positive number, and write P = [n1/k]. Let v, w ∈ N satisfy
v ≥ k − 1, and write s = 2v + w. We consider the number of representations, R(n), of n

in the form

n = xk
1 + xk

2 + yk
1 + . . . + yk

s ,

with x1, x2 ∈ Z ∩ [1, P ] and yi ∈ A(P,R) (1 ≤ i ≤ s). On writing

g(α) =
∑

1≤x≤P

e(αxk),

we therefore have

R(n) =
∫ 1

0

g(α)2f(α;P,R)se(−αn)dα.

Let m denote the set of real numbers α ∈ [0, 1) with the property that, whenever a ∈ Z,
q ∈ N, (a, q) = 1 and |α − a/q| ≤ q−1P 1−k, one has q > P . Then by Corollary 1 to
Theorem 4.2, together with the remark at the end of section 3 of [9], it follows that

∫
m

g(α)2f(α;P,R)2v+we(−αn)dα �
(

sup
α∈m

|f(α;P,R)|
)w ∫ 1

0

|g(α)2f(α;P,R)2v|dα

�
(
P 1−σ(k)+ε

)w

P 2v+2−k+∆v+1+ε.

Thus, provided that wσ(k) > ∆v+1, then

∫
m

g(α)2f(α;P,R)2v+we(−αn)dα � P s+2−k−δ
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for some positive number δ. The major arcs M = [0, 1) \ m may be dealt with by means
of the same pruning argument as was used in [5, section 5], owing to the presence of the
factor g(α)2 (consisting of exponential sums over complete intervals). Thereby, one may
obtain ∫

M

g(α)2f(α;P,R)2v+we(−αn)dα � P s+2−k,

and the desired conclusion follows immediately.

In order to prove Theorem 1.4, we have merely to apply Theorem 5.1 with v =
[ 12k(log k + log log k + 1)]. From the concluding remark of Lemma 2.1, the exponent ∆v+1

is permissible, where
∆v+1 ≤ ke1−2(v+1)/k ≤ 1/ log k.

Meanwhile, from Theorem 1.1 we have σ(k)−1 = k log k+O(k log log k). Thus, in Theorem
5.1 we deduce that

G(k) ≤ k(log k + log log k + 1) + k + O

(
k log log k

log k

)
.

For Theorem 1.3 we must work a little harder. We calculate σ(k) by applying Corollary
1 to Theorem 4.2, using the values of ∆s, ∆t and ∆w listed in the table in the Appendix.
The latter values of ∆n may be shown, after some calculations, to be permissible by using
the methods of [9] (we should point out that superior estimates should arise, albeit after
much greater effort, from the methods of [7]). Having checked that the corresponding
value of λ(k), which is also listed in the table, satisfies the necessary hypotheses, we then
apply Theorem 5.1 using the value of v indicated in the Appendix. The estimates for G(k)
detailed in Theorem 1.3 then follow immediately.

6. Localised estimates for fractional parts of polynomials.

We can dispose of the proof of Theorem 1.2 swiftly with a standard appeal to [1, Lemma
5]. We take λ = λ(k) and σ(k) to be as defined in the statement of Corollary 2 to Theorem
4.2. We let φ be any real number with ε < φ < σ(k). Let P be a large positive number,
and put H = Pσ(k)−φ. Define T (α) by

T (α) =
∑

1≤h≤H

|f(hα;P,R)| .

15



Then provided that we can establish the bound T (α) = o(P ), by [1, Lemma 5], as in [11,
section 5], it follows that

min
1≤n≤P

‖αnk‖ < Pφ−k.

Suppose first that there is a triple h, a, q with 1 ≤ h ≤ H, a ∈ Z, q ∈ N, (a, q) = 1,
|qhα− a| ≤ Pλ−k and q ≤ PλR. Then

‖α(qh)k‖ ≤ |(qh)kα− a(qh)k−1| < (HPλR)k−1Pλ−k � P−σ(k).

Then in this case

min
1≤n≤P

‖αnk‖ ≤ ‖α(qh)k‖ < Pφ−σ(k).

In the alternative case, for each triple h, a, q with 1 ≤ h ≤ H, a ∈ Z, q ∈ N, (a, q) = 1 and
|qhα− a| ≤ Pλ−k, we have q > PλR. Then by Corollary 2 to Theorem 4.2,

max
1≤h≤H

|f(hα;P,R)| � P 1−σ(k)+ε.

Consequently,

T (α) � HP 1−σ(k)+ε = o(P ),

and the desired conclusion follows once again.

Appendix. Numerical values for parameters.

In this appendix we display in tabular form the numerical values of the parameters arising
in the method discussed in section 5. The displayed figures were calculated to 12 significant
figures on a computer, and then the values of the permissible exponents ∆n and σ(k)−1

were rounded up in the last displayed figure.
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k s w t ∆s ∆w ∆t σ(k)−1 λ(k) v ∆v+1

10 22 13 7 0.22849 1.46021 4.06022 97.962 0.55161 25 0.09524
11 25 15 8 0.22308 1.44899 4.32206 110.137 0.55358 29 0.08311
12 28 16 9 0.22111 1.70161 4.59367 122.577 0.55521 32 0.09005
13 31 18 9 0.22065 1.69429 5.45150 134.996 0.55702 35 0.09680
14 35 20 10 0.19066 1.69881 5.71309 147.591 0.55847 39 0.08897
15 38 21 11 0.19444 1.93796 5.97304 160.133 0.56014 43 0.08311
16 41 22 12 0.19883 2.18309 6.23839 172.870 0.56153 46 0.08993
17 44 24 12 0.20344 2.18066 7.09136 185.636 0.56296 50 0.08538
18 47 26 13 0.20843 2.18618 7.35059 198.499 0.56436 54 0.08188
19 51 27 14 0.19133 2.42272 7.60987 211.371 0.56567 57 0.08837
20 54 29 14 0.19729 2.42874 8.46768 224.370 0.56682 61 0.08546
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